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Optimal merging of (uncertain) model predictions with (uncertain)
measurements.
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Data assimilation #) J0LICH
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Optimal merging of (uncertain) model predictions with (uncertain)
measurements.

Models are applied in a variety of earth system disciplines:
=  Atmosphere

= Oceanography

» Land surface

= Surface water/ groundwater

= Glaciology

= Radiative transfer models

= Vegetation dynamics/ Biogeochemistry
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Why are model predictions uncertain? #) JOLICH
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Model structural errors:
= Richards equation in land surface models
= Soil respiration in land surface models: simple black-box concept
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Why are model predictions uncertain? #) JOLICH
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Model structural errors:
= Richards equation in land surface models
= Soil respiration in land surface models: simple black-box concept

Parameter errors:
= Soil hydraulic parameters like saturated conductivity or porosity
= Ecosystem parameters like rooting depth

Errors in model forcings:
= Precipitation
= Short wave radiation

Errors in initial conditions:
= [nitial soil moisture content
= Carbon pools
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Measurement data #) JOLICH
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= Provide information on model states
= Provide (indirectly) information on parameters and model forcings

= Data are more valuable if they provide information over larger
spatial and temporal scales
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Measurement data #) JOLICH
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= Provide information on model states
= Provide (indirectly) information on parameters and model forcings

= Data are more valuable if they provide information over larger
spatial and temporal scales

Important limitations

= [Information is always incomplete: not everywhere, not always

= Random measurement errors (e.g., instrument precision)
= Systematic measurement errors (e.g., LAl from SMOS)

= Complicated relationship between what is measured and the
quantity of interest (e.g., brightness temperature from SMOS and
soil moisture content)
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Prior  Likelihood

Posterior P et
——
STy — PRl [

20

Evidence
Often a Gaussian distribution is assumed as prior:
p(x) oc exp (—3(x — p)TC ' (x — 1))
The likelihood in case of a Gaussian assumption is given by:

p(y | x) oc exp (= 5(y — HX)TR™"(y — Hx))
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Prior  Likelihood

Posterior P et
—_— X X
Sy = PRl [X)

20

Evidence
Often a Gaussian distribution is assumed as prior:
p(x) oc exp (—5(x — p)TC 1 (x — p))
The likelihood in case of a Gaussian assumption is given by:
p(y | x) oc exp (= 5(y — HX)TR™"(y — Hx))

= Kalman filter and variational DA follow as solutions
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= Inverse modelling / Variational DA

= Markov Chain Monte Carlo (MCMC)

= Ensemble Kalman Filter (EnKF)

= Particle Filter (PF)

= Ensemble Kalman Smoother (EnKS)/ Particle Smoother (PS)
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= Inverse modelling / Variational DA

= Markov Chain Monte Carlo (MCMC)

= Ensemble Kalman Filter (EnKF)

= Particle Filter (PF)

= Ensemble Kalman Smoother (EnKS)/ Particle Smoother (PS)

Differ with respect to e.g.:

= Temporal treatment of observations
= Intrinsic assumptions

= Computational cost

= Uncertainty quantification
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IR

Measurements are processed in batch to update states/parameters for
all time steps.
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Incoming measurements are only used to update states/parameters at
current time step.
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Observations in smoothers (EnKS/ PS) #) JOLICH
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Incoming measurements are used to update states/parameters at
current and previous time steps.
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= Markov Chain Monte Carlo
very general, but expensive

= Inverse modelling/ Variational DA
Gaussian assumption, uncertainty estimates relatively poor

= Particle Filter
Markovian assumption (sequential), expensive, uncertainty
estimates relatively poor related to filter collapse

= Ensemble Kalman Filter
Marcovian assumption (sequential), Gaussian assumption, efficient,
better uncertainty estimates than for gradient based inverse

= Ensemble Kalman Smoother
Gaussian assumption, but data over longer time period
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Prediction equation

xt=M(x~", pr, i) + wf

= model states

= model parameters

= model forcings

= model errors

= (non-linear) forward model
= time

~ T € Q3T X
|

model realization

-
Il
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Measurement equation

yi = Hxi + €

= model states
simulation at observation point
= measurement operator

T < %
1}

measurement error

)
Il

model realization

-
Il
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Updating equation

X/+ = Xit + K(y — )

= model states (predicted)

= model states (updated)
Kalman gain

= measurement

= simulation at observation point
= model realization

- <t< X % X
1l
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Kalman gain

K = CX}",(HCX}", —+ R)_1

K = Kalman gain
Cxy = covariance matrix of states and simulated measurements
R = measurement error covariance matrix
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Covariance matrix
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Covariance matrix
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= Kalman gain weigths model prediciton uncertainty and
measurement uncertainty. For a scalar (one point):

2
K — s:m
GSlm + Uobs

= Model prediction uncertainty estimated by covariance matrix C,j
(from the ensemble)

= Kalman gain matrix also determines how a measurement affects the
surroundings and corrects surrounding states:
Depending on the strength of spatial correlation, a measurement might
correct the states in the neighbourhood strongly, or only weakly
- Spatial correlations depend on model physics, but also correlations of
static parameters like land use or soil properties
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Filter performance dependent on:

Relation between model uncertainty and measurement uncertainty
Update frequency

Ensemble size

Amount of observations
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= Measurement data can also be used to update model parameters
jointly with the states
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Joint state-parameter update O JU'—'CH

Measurement data can also be used to update model parameters

jointly with the states
Parameters are appended to the state vector:

B

x = state-parameter vector
s = state vector
p = parameter vector
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Measurement data can also be used to update model parameters

jointly with the states
Parameters are appended to the state vector:

7

X
s state vector
p = parameter vector

= Covariance matrix C,j then also contains covariances between

states and parameters

state-parameter vector
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Joint state-parameter update 0 JU'—'CH

Measurement data can also be used to update model parameters

jointly with the states
Parameters are appended to the state vector:

7

X
s state vector
p = parameter vector

= Covariance matrix C,j then also contains covariances between

states and parameters
Measurements are used to update parameters indirectly

state-parameter vector
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https://www.image.ucar.edu/DAReS/DART/
http://pdaf.awi.de/trac/wiki
http://www.openda.org/joomla/index.php

Data assimilation software

= Data Assimilation Research Testbed (DART)
https://www.image.ucar.edu/DAReS/DART/

= Parallel Data Assimilation Framework (PDAF)
http://pdaf.awi.de/trac/wiki

= OpenDA
http://www.openda.org/joomla/index.php
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Data assimilation software !) JULICH

= Data Assimilation Research Testbed (DART)
https://www.image.ucar.edu/DAReS/DART/

= Parallel Data Assimilation Framework (PDAF)
http://pdaf.awi.de/trac/wiki

= OpenDA
http://www.openda.org/joomla/index.php

Differ with respect to e.g.:

= Implementation strategy (Fortran, Java, ...)
= Available filter methods

= Model coupling

= Parallelism

= Additional utilities (localization, covariance inflation, measurement
operators,...)
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Coupling to DA software 0 JULICH
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User needs to link model with DA and provide certain

functionality

= Allow ensemble propagation of different model realizations
= Extract state(-parameter) vector from model output
= Provide measurements and measurement operators

= Redirect updated states vector (parameters) to model input for next
time step
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Offline coupling

= Data transfer between model and DA module via input/output files
= Requires utilties to read/write the required input/output files

= Program could be proprietary (no source code needed)

= Easy to implement

= Performance degradation due to high 1/O
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Online coupling

= Data transfer between model and DA module via main memory
= DA module is wrapped around program

= Source code required

= Programming effort depends on model

= Usually faster than offline coupling

23 June 2015 IBG-3: Agrosphere 25



Lorenz 63 system #) J0LICH

%w(y—x) (1) | I |

Y xo-2-y @ (:)

az

azv 0 T 1

X : convective flow

y : horizontal temperature distribution 3

z : vertical temperature distribution s

o : viscosity / thermal conductivity N2 ”
p : temperature difference top/bottom 2

B,; width to height ratio of cell e Agmsph::o o o 1o %0 s




