

#### Short tutorial on data assimilation

#### 23 June 2015 | Wolfgang Kurtz & Harrie-Jan Hendricks Franssen

Institute of Bio- and Geosciences IBG-3 (Agrosphere), Forschungszentrum Jülich GmbH Centre for High-Performance Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich

#### **Data assimilation**



Optimal merging of (uncertain) model predictions with (uncertain) measurements.

## **Data assimilation**



# Optimal merging of (uncertain) model predictions with (uncertain) measurements.

Models are applied in a variety of earth system disciplines:

- Atmosphere
- Oceanography
- Land surface
- Surface water/ groundwater
- Glaciology
- Radiative transfer models
- Vegetation dynamics/ Biogeochemistry



#### Model structural errors:

- Richards equation in land surface models
- Soil respiration in land surface models: simple black-box concept



#### Model structural errors:

- Richards equation in land surface models
- Soil respiration in land surface models: simple black-box concept

#### Parameter errors:

- Soil hydraulic parameters like saturated conductivity or porosity
- Ecosystem parameters like rooting depth



#### Model structural errors:

- Richards equation in land surface models
- Soil respiration in land surface models: simple black-box concept

#### Parameter errors:

- Soil hydraulic parameters like saturated conductivity or porosity
- Ecosystem parameters like rooting depth

#### Errors in model forcings:

- Precipitation
- Short wave radiation



#### Model structural errors:

- Richards equation in land surface models
- Soil respiration in land surface models: simple black-box concept

#### Parameter errors:

- Soil hydraulic parameters like saturated conductivity or porosity
- Ecosystem parameters like rooting depth

#### Errors in model forcings:

- Precipitation
- Short wave radiation

#### Errors in initial conditions:

- Initial soil moisture content
- Carbon pools

#### **Measurement data**



- Provide information on model states
- Provide (indirectly) information on parameters and model forcings
- Data are more valuable if they provide information over larger spatial and temporal scales

### **Measurement data**



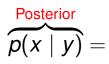
- Provide information on model states
- Provide (indirectly) information on parameters and model forcings
- Data are more valuable if they provide information over larger spatial and temporal scales

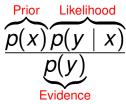
#### Important limitations

- Information is always incomplete: not everywhere, not always
- Random measurement errors (e.g., instrument precision)
- Systematic measurement errors (e.g., LAI from SMOS)
- Complicated relationship between what is measured and the quantity of interest (e.g., brightness temperature from SMOS and soil moisture content)



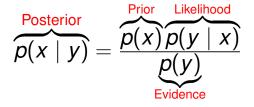










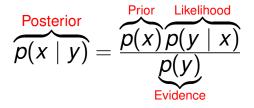


Often a Gaussian distribution is assumed as prior:  $p(x) \propto exp\left(-\frac{1}{2}(x-\mu)^{T}C^{-1}(x-\mu)\right)$ 

The likelihood in case of a Gaussian assumption is given by:  $p(y \mid x) \propto exp\left(-\frac{1}{2}(y - Hx)^{T}R^{-1}(y - Hx)\right)$ 







Often a Gaussian distribution is assumed as prior:  $p(x) \propto exp\left(-\frac{1}{2}(x-\mu)^{T}C^{-1}(x-\mu)\right)$ 

The likelihood in case of a Gaussian assumption is given by:  $p(y \mid x) \propto exp\left(-\frac{1}{2}(y - Hx)^{T}R^{-1}(y - Hx)\right)$ 

#### $\Rightarrow$ Kalman filter and variational DA follow as solutions

# **DA methods**



- Inverse modelling / Variational DA
- Markov Chain Monte Carlo (MCMC)
- Ensemble Kalman Filter (EnKF)
- Particle Filter (PF)
- Ensemble Kalman Smoother (EnKS)/ Particle Smoother (PS)

## **DA methods**



- Inverse modelling / Variational DA
- Markov Chain Monte Carlo (MCMC)
- Ensemble Kalman Filter (EnKF)
- Particle Filter (PF)
- Ensemble Kalman Smoother (EnKS)/ Particle Smoother (PS)

#### Differ with respect to e.g.:

- Temporal treatment of observations
- Intrinsic assumptions
- Computational cost
- Uncertainty quantification

# **Observations in variational DA/ MCMC**

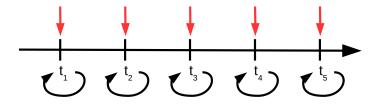




Measurements are processed in batch to update states/parameters for all time steps.

# **Observations in filters (EnKF/ PF)**

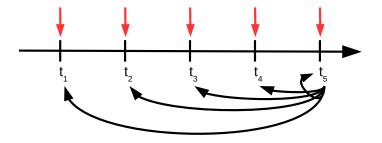




Incoming measurements are only used to update states/parameters at current time step.

# Observations in smoothers (EnKS/ PS)





Incoming measurements are used to update states/parameters at current and previous time steps.

# **DA methods**



- Markov Chain Monte Carlo very general, but expensive
- Inverse modelling/ Variational DA Gaussian assumption, uncertainty estimates relatively poor
- Particle Filter

Markovian assumption (sequential), expensive, uncertainty estimates relatively poor related to filter collapse

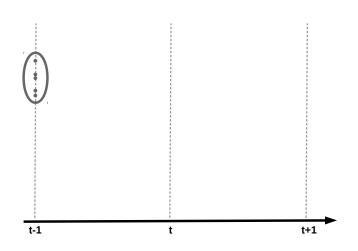
#### Ensemble Kalman Filter

Marcovian assumption (sequential), Gaussian assumption, efficient, better uncertainty estimates than for gradient based inverse

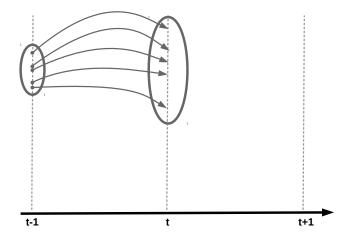
#### Ensemble Kalman Smoother

Gaussian assumption, but data over longer time period

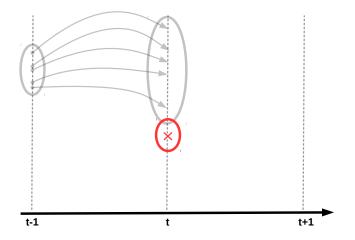




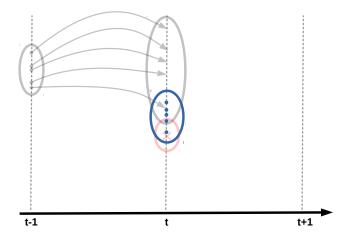




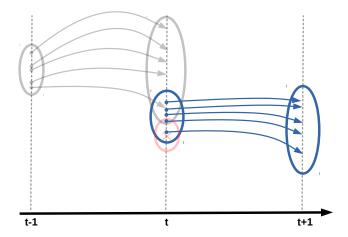














### Prediction equation

$$x_i^t = M(x_i^{t-1}, p_i, q_i) + \omega_i^t$$

- x = model states
- p = model parameters
- q = model forcings
- $\omega$  = model errors
- M = (non-linear) forward model
- t = time
- *i* = model realization



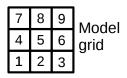
#### Measurement equation

$$\tilde{y}_i = H x_i + \epsilon_i$$

- x = model states
- $\tilde{y}$  = simulation at observation point
- H = measurement operator
- $\epsilon$  = measurement error
- *i* = model realization

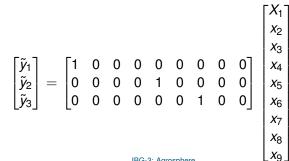
#### **Measurement operator**





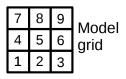
# Measurement locations





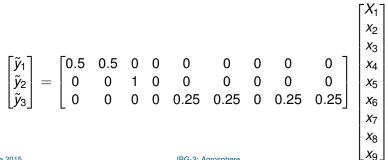
#### **Measurement operator**





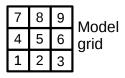
Measurement locations not at cell centers





#### **Measurement operator**





One remote sensing measurement



$$\begin{bmatrix} \tilde{y}_1 \end{bmatrix} = \begin{bmatrix} \frac{1}{9} & \frac{1}{9} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \\ X_6 \\ X_7 \\ X_8 \\ X_9 \end{bmatrix}$$

23 June 2015

15



## Updating equation

$$x_i^+ = x_i^t + K(y - \tilde{y}_i)$$

- x = model states (predicted)
- x = model states (updated)
- K = Kalman gain
- y = measurement
- $\tilde{y}$  = simulation at observation point
  - model realization

i

# Ensemble Kalman filter - Analysis scheme



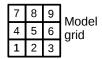
#### Kalman gain

$$K = C_{x ilde{y}}(HC_{x ilde{y}}+R)^{-1}$$

- K = Kalman gain
- $C_{x\tilde{y}}$  = covariance matrix of states and simulated measurements
- *R* = measurement error covariance matrix

### **Covariance matrix**





Measurement locations

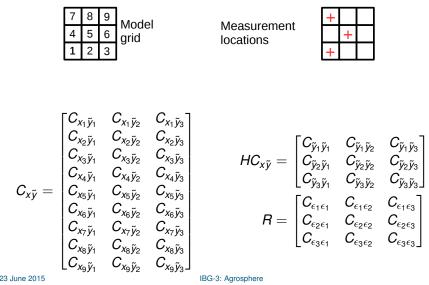


$$C_{x ilde y} = egin{bmatrix} C_{x_1 ilde y_1} & C_{x_1 ilde y_2} & C_{x_1 ilde y_3} \ C_{x_2 ilde y_1} & C_{x_2 ilde y_2} & C_{x_2 ilde y_3} \ C_{x_3 ilde y_1} & C_{x_3 ilde y_2} & C_{x_3 ilde y_3} \ C_{x_4 ilde y_1} & C_{x_4 ilde y_2} & C_{x_4 ilde y_3} \ C_{x_5 ilde y_1} & C_{x_5 ilde y_2} & C_{x_5 ilde y_3} \ C_{x_6 ilde y_1} & C_{x_6 ilde y_2} & C_{x_6 ilde y_3} \ C_{x_7 ilde y_1} & C_{x_7 ilde y_2} & C_{x_7 ilde y_3} \ C_{x_8 ilde y_1} & C_{x_8 ilde y_2} & C_{x_8 ilde y_3} \ C_{x_9 ilde y_1} & C_{x_8 ilde y_2} & C_{x_8 ilde y_3} \ C_{x_9 ilde y_1} & C_{x_9 ilde y_2} & C_{x_9 ilde y_3} \ \end{bmatrix}$$

IBG-3: Agrosphere

#### **Covariance matrix**





23 June 2015

IBG-3: Aarosphere

## Kalman gain



 Kalman gain weigths model prediciton uncertainty and measurement uncertainty. For a scalar (one point):

$${\it K}=rac{\sigma_{sim}^2}{\sigma_{sim}^2+\sigma_{obs}^2}$$

- Model prediction uncertainty estimated by covariance matrix  $C_{x\tilde{y}}$  (from the ensemble)
- Kalman gain matrix also determines how a measurement affects the surroundings and corrects surrounding states:
  - Depending on the strength of spatial correlation, a measurement might correct the states in the neighbourhood strongly, or only weakly
  - Spatial correlations depend on model physics, but also correlations of static parameters like land use or soil properties



Filter performance dependent on:

- Relation between model uncertainty and measurement uncertainty
- Update frequency
- Ensemble size
- Amount of observations



 Measurement data can also be used to update model parameters jointly with the states



- Measurement data can also be used to update model parameters jointly with the states
- Parameters are appended to the state vector:

$$x = \begin{bmatrix} s \\ p \end{bmatrix}$$

- x = state-parameter vector
- s = state vector
- p = parameter vector



- Measurement data can also be used to update model parameters jointly with the states
- Parameters are appended to the state vector:

$$\mathbf{x} = \begin{bmatrix} \mathbf{s} \\ \mathbf{p} \end{bmatrix}$$

- x = state-parameter vector
- s = state vector
- p = parameter vector
- Covariance matrix  $C_{x\tilde{y}}$  then also contains covariances between states and parameters



- Measurement data can also be used to update model parameters jointly with the states
- Parameters are appended to the state vector:

$$\mathbf{x} = \begin{bmatrix} \mathbf{s} \\ \mathbf{p} \end{bmatrix}$$

- x = state-parameter vector
- s = state vector
- p = parameter vector
- Covariance matrix  $C_{x\tilde{y}}$  then also contains covariances between states and parameters
- Measurements are used to update parameters indirectly

# Data assimilation software



# Data assimilation software



- Data Assimilation Research Testbed (DART) https://www.image.ucar.edu/DAReS/DART/
- Parallel Data Assimilation Framework (PDAF) http://pdaf.awi.de/trac/wiki
- OpenDA

http://www.openda.org/joomla/index.php

# Data assimilation software



- Data Assimilation Research Testbed (DART) https://www.image.ucar.edu/DAReS/DART/
- Parallel Data Assimilation Framework (PDAF) http://pdaf.awi.de/trac/wiki
- OpenDA

http://www.openda.org/joomla/index.php

#### Differ with respect to e.g.:

- Implementation strategy (Fortran, Java, ...)
- Available filter methods
- Model coupling
- Parallelism
- Additional utilities (localization, covariance inflation, measurement operators,...)

# **Coupling to DA software**



# User needs to link model with DA and provide certain functionality

- Allow ensemble propagation of different model realizations
- Extract state(-parameter) vector from model output
- Provide measurements and measurement operators
- Redirect updated states vector (parameters) to model input for next time step

# **Coupling to DA software**



#### Offline coupling

- Data transfer between model and DA module via input/output files
- Requires utilities to read/write the required input/output files
- Program could be proprietary (no source code needed)
- Easy to implement
- Performance degradation due to high I/O

# **Coupling to DA software**



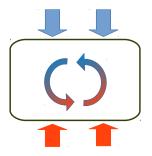
#### Online coupling

- Data transfer between model and DA module via main memory
- DA module is wrapped around program
- Source code required
- Programming effort depends on model
- Usually faster than offline coupling

# Lorenz 63 system

$$\frac{dx}{dt} = \sigma(y - x)$$
(1)  
$$\frac{dy}{dt} = x(\rho - z) - y$$
(2)  
$$\frac{dz}{dt} = xy - \beta z$$
(3)





#### x : convective flow

- y : horizontal temperature distribution
- z : vertical temperature distribution
- $\sigma$  : viscosity / thermal conductivity
- $\rho$  : temperature difference top/bottom
- 3: width to height ratio of cell

