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Data assimilation

Optimal merging of (uncertain) model predictions with (uncertain)
measurements.

Models are applied in a variety of earth system disciplines:

Atmosphere

Oceanography

Land surface

Surface water/ groundwater

Glaciology

Radiative transfer models

Vegetation dynamics/ Biogeochemistry
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Why are model predictions uncertain?

Model structural errors:
Richards equation in land surface models
Soil respiration in land surface models: simple black-box concept

Parameter errors:
Soil hydraulic parameters like saturated conductivity or porosity
Ecosystem parameters like rooting depth

Errors in model forcings:
Precipitation
Short wave radiation

Errors in initial conditions:
Initial soil moisture content
Carbon pools
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Measurement data

Provide information on model states

Provide (indirectly) information on parameters and model forcings

Data are more valuable if they provide information over larger
spatial and temporal scales

Important limitations

Information is always incomplete: not everywhere, not always

Random measurement errors (e.g., instrument precision)

Systematic measurement errors (e.g., LAI from SMOS)

Complicated relationship between what is measured and the
quantity of interest (e.g., brightness temperature from SMOS and
soil moisture content)
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Bayes Law

Posterior︷ ︸︸ ︷
p(x | y) =

Prior︷︸︸︷
p(x)

Likelihood︷ ︸︸ ︷
p(y | x)

p(y)︸︷︷︸
Evidence

Often a Gaussian distribution is assumed as prior:

p(x) ∝ exp
(
−1

2(x − µ)ᵀC−1(x − µ)
)

The likelihood in case of a Gaussian assumption is given by:

p(y | x) ∝ exp
(
−1

2(y − Hx)ᵀR−1(y − Hx)
)

⇒ Kalman filter and variational DA follow as solutions
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DA methods

Inverse modelling / Variational DA

Markov Chain Monte Carlo (MCMC)

Ensemble Kalman Filter (EnKF)

Particle Filter (PF)

Ensemble Kalman Smoother (EnKS)/ Particle Smoother (PS)

Differ with respect to e.g.:

Temporal treatment of observations

Intrinsic assumptions

Computational cost

Uncertainty quantification
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Observations in variational DA/ MCMC

t
1

t
3

t
4

t
5

t
2

Measurements are processed in batch to update states/parameters for
all time steps.
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Observations in filters (EnKF/ PF)

t
1

t
3

t
4

t
5

t
2

Incoming measurements are only used to update states/parameters at
current time step.

23 June 2015 IBG-3: Agrosphere 7



Observations in smoothers (EnKS/ PS)

t
1

t
3

t
4

t
5

t
2

Incoming measurements are used to update states/parameters at
current and previous time steps.
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DA methods

Markov Chain Monte Carlo
very general, but expensive

Inverse modelling/ Variational DA
Gaussian assumption, uncertainty estimates relatively poor

Particle Filter
Markovian assumption (sequential), expensive, uncertainty
estimates relatively poor related to filter collapse

Ensemble Kalman Filter
Marcovian assumption (sequential), Gaussian assumption, efficient,
better uncertainty estimates than for gradient based inverse

Ensemble Kalman Smoother
Gaussian assumption, but data over longer time period
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Ensemble Kalman Filter

t-1 t t+1
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Ensemble Kalman filter - Analysis scheme

Prediction equation

x t
i = M(x t−1

i , pi , qi) + ωt
i

x = model states

p = model parameters

q = model forcings

ω = model errors

M = (non-linear) forward model

t = time

i = model realization
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Ensemble Kalman filter - Analysis scheme

Measurement equation

ỹi = Hxi + εi

x = model states

ỹ = simulation at observation point

H = measurement operator

ε = measurement error

i = model realization
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Measurement operator

Model
grid

1 21 3

54 6

87 9

+
+

+
Measurement 
locations 

ỹ1

ỹ2

ỹ3

 =

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0





X1

x2

x3

x4

x5

x6

x7

x8

x9


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Measurement operator

1 21 3

54 6

87 9
Measurement 
locations not at 
cell centers

Model
grid

+ +

+

ỹ1

ỹ2

ỹ3

 =

0.5 0.5 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0.25 0.25 0 0.25 0.25





X1

x2

x3

x4

x5

x6

x7

x8

x9


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Measurement operator

1 21 3

54 6

87 9
One remote 
sensing 
measurement

Model
grid

[
ỹ1
]
=
[1

9
1
9

1
9

1
9

1
9

1
9

1
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1
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1
9

]



X1

x2
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x5
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x7

x8

x9
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Ensemble Kalman filter - Analysis scheme

Updating equation

x+
i = x t

i + K (y − ỹi)

x = model states (predicted)

x = model states (updated)

K = Kalman gain

y = measurement

ỹ = simulation at observation point

i = model realization
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Ensemble Kalman filter - Analysis scheme

Kalman gain

K = Cxỹ(HCxỹ + R)−1

K = Kalman gain

Cxỹ = covariance matrix of states and simulated measurements

R = measurement error covariance matrix
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Covariance matrix

Model
grid

1 21 3

54 6

87 9

+
+

+
Measurement 
locations 

Cxỹ =



Cx1ỹ1 Cx1ỹ2 Cx1ỹ3

Cx2ỹ1 Cx2ỹ2 Cx2ỹ3

Cx3ỹ1 Cx3ỹ2 Cx3ỹ3

Cx4ỹ1 Cx4ỹ2 Cx4ỹ3

Cx5ỹ1 Cx5ỹ2 Cx5ỹ3

Cx6ỹ1 Cx6ỹ2 Cx6ỹ3

Cx7ỹ1 Cx7ỹ2 Cx7ỹ3

Cx8ỹ1 Cx8ỹ2 Cx8ỹ3

Cx9ỹ1 Cx9ỹ2 Cx9ỹ3



HCxỹ =

Cỹ1ỹ1 Cỹ1ỹ2 Cỹ1ỹ3

Cỹ2ỹ1 Cỹ2ỹ2 Cỹ2ỹ3

Cỹ3ỹ1 Cỹ3ỹ2 Cỹ3ỹ3


R =

Cε1ε1 Cε1ε2 Cε1ε3

Cε2ε1 Cε2ε2 Cε2ε3

Cε3ε1 Cε3ε2 Cε3ε3


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Kalman gain

Kalman gain weigths model prediciton uncertainty and
measurement uncertainty. For a scalar (one point):

K =
σ2

sim
σ2

sim+σ2
obs

Model prediction uncertainty estimated by covariance matrix Cxỹ
(from the ensemble)

Kalman gain matrix also determines how a measurement affects the
surroundings and corrects surrounding states:

Depending on the strength of spatial correlation, a measurement might
correct the states in the neighbourhood strongly, or only weakly
Spatial correlations depend on model physics, but also correlations of
static parameters like land use or soil properties
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EnKF update

Filter performance dependent on:

Relation between model uncertainty and measurement uncertainty

Update frequency

Ensemble size

Amount of observations
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Joint state-parameter update

Measurement data can also be used to update model parameters
jointly with the states

Parameters are appended to the state vector:

x =

[
s
p

]
x = state-parameter vector

s = state vector

p = parameter vector

Covariance matrix Cxỹ then also contains covariances between
states and parameters

Measurements are used to update parameters indirectly
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Data assimilation software

Data Assimilation Research Testbed (DART)
https://www.image.ucar.edu/DAReS/DART/

Parallel Data Assimilation Framework (PDAF)
http://pdaf.awi.de/trac/wiki

OpenDA
http://www.openda.org/joomla/index.php

Differ with respect to e.g.:

Implementation strategy (Fortran, Java, ...)

Available filter methods

Model coupling

Parallelism

Additional utilities (localization, covariance inflation, measurement
operators,...)
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Coupling to DA software

User needs to link model with DA and provide certain
functionality

Allow ensemble propagation of different model realizations

Extract state(-parameter) vector from model output

Provide measurements and measurement operators

Redirect updated states vector (parameters) to model input for next
time step
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Coupling to DA software

Offline coupling

Data transfer between model and DA module via input/output files

Requires utilties to read/write the required input/output files

Program could be proprietary (no source code needed)

Easy to implement

Performance degradation due to high I/O
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Coupling to DA software

Online coupling

Data transfer between model and DA module via main memory

DA module is wrapped around program

Source code required

Programming effort depends on model

Usually faster than offline coupling
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Lorenz 63 system

dx
dt

= σ(y − x) (1)

dy
dt

= x(ρ− z)− y (2)

dz
dt

= xy − βz (3)

x : convective flow

y : horizontal temperature distribution

z : vertical temperature distribution

σ : viscosity / thermal conductivity

ρ : temperature difference top/bottom

β : width to height ratio of cell −20 −10   0  10  20 0
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