

Global Ecosystem Dynamics Investigation Mission Status

Ralph Dubayah

University of Maryland

- Science Goals and Objectives
- Mission and Instrument Specifications
- Science Approach and Data Products
- Calibration and Validation Activities
- Fusion with Tandem-X and Other Missions

Earth Ventures Instrument (EVI)

- Selected in late 2014 for \$94 M (Class C mission)
- Multi-beam waveform lidar instrument
 - NASA Goddard Spaceflight Center (GSFC)
- Deployed on International Space Station
 - Launch on SpaceX-18: 31 December 2018
 - Observations between +/- 50° N &
- Nominal 2 year mission length

5th Alliance Week 2017 R. Dubayah: GEDI Mission Status

Mission Overview

High Resolution Laser Ranging of the Earth's Forests and

- GEDI produces high resolution laser ranging observations of the 3D structure of the Earth.
- GEDI makes precise measurements of forest canopy height, canopy vertical structure, and surface elevation.
- GEDI improves our ability to characterize important carbon and water cycling processes, biodiversity and habitat.

GEDI is deployed on the JEM-EF

Science Questions and Objectives

ECOSYSTEM LIDAR

45		Quantify
40		Forest Biomass
35		Disturbance and
30		Recovery
25		Carbon
20		Sequestration Potential
15		
10		Vertical Forest Structure and its
5		Relationship to Biodiversity
		,VER
GEDI	5 th Alliance Week 2017 R. Dubayah: GEDI Mission Status	5 NASA

Science Applications

Geodetic-class laser ranging measurements have far reaching applications Forest height and vertical structure; habitat quality & biodiversity; Forest carbon sinks & source areas; loss of carbon from extreme events such as fires and hurricanes; parameterization of ecosystem models

Canopy 3D structure that influences snowmelt, evapotranspiration,

Improved canopy aerodynamic profiles to parameterize weather

constrain climate models; impacts of land use change on climate

prediction models. Canopy and biomass products that initialize and

lake & river stage; snowpack elevation; coastal tides.

canopy interception of precipitation. Glacier surface elevation change;

Forest Management & Carbon Cycling

> Water Resources

> Weather Prediction

Accurate bare earth and under canopy topographic elevations for improved digital elevation models from radar. Calibration of satellite based observations of surface deformation and earthquakes Topography & Surface Deformation

GEDI Lidar Measurements

GEDI's sole observable is the lidar waveform which provides ground elevation, canopy height, cover and various profiles and metrics.

GEDI makes 12 billion observations of forest and land surface structure over its nominal two-year mission

GEDI Beam Pattern

GEDI uses 3 lasers to produce 10 transects of lidar waveforms.

Each footprint provides the complete vertical structure of the canopy.

Dithering can be turned off for contiguous, along-track coverage.

Current Mission and Engineering Status

- GEDI successfully passed key milestones:
 - Confirmation Review and Critical Design Review (CDR)
- Currently in Phase C
- All Algorithm Theoretical Basis Documents (ATBDs) have been created and externally reviewed
- Integration & Test begins in October
- On schedule towards launch on 31 December 2018
 - Retired many risks this spring

		2015		2016		2	2017		2018			2019			2020		2021		
	ND	JFMAMJJAS	SOND	JFMA	MJ	JASON	DJFMAM	JJASO	NDJF	мамј	JASON	DJF	МАМЈ	JASOND	JFMA	A M J J /	ASOND	JFM	M J J A
		Phase A	Pha	is e B			Phase C	i i i		Phase	D		-		Phase E			Ph	ase F
1	KD	P-A 8/26 🛉	KDP-B		6/9 🛧	DP-C/CR		10/12 合	KDP-D		11/30 4	KDP-E				1		1	
		Formulatio	on			Desi	on and Fabricatio	on 🛛		Integration	and Test			Science and	Mission Op	perations		V	Vrap-Up
		SRR 🛉	IŞ	S PDR	PDR	IBR 🚹 IS		PER 🛉		🕈 🕆 PS	SR 🚹 LRD	SpX Lau	-18 nch						

GEDI Lidar Instrument

5th Alliance Week 2017 R. Dubayah: GEDI Mission Status

11

PIU

GEDI Lidar Instrument

5th Alliance Week 2017 R. Dubayah: GEDI Mission Status

GEDI Beryllium Mirror

• GEDI mirror is exact copy of ICESat2 mirror

 Same material as
James Webb Space
Telescope

GEDI Hardware

Flight Optical Bench

Beam Dithering Unit

R. Dubayah: GEDI Mission Status

Beam Align. Mechanism

Science Approach and Data Products

GEDI Performance Tool

- End-to-end waveform and mission operations/orbital simulator
- Used to understand science impacts and mitigations
 - Assess algorithm performance, environmental impacts and guide and cal/val

5th Alliance Week 2017 R. Dubayah: GEDI Mission Status

Simulation of GEDI Waveforms from Airborne Lidar

Create simulated waveforms 40 Height (m)

5th Alliance Week 2017 R. Dubayah: GEDI Mission Status 17

GEDI Forest Structure Data Base

Field Plot Configurations

Plots have various sizes and configurations, which is a challenge for calibration and validation

19

GEDI Footprint Biomass Models

Footprint-level biomass models are built from existing ALS/field data

Systematic comparison of model performance *Theoretical models*: AGBD ($Mg ha^{-1}$) = $a \times RH_i^{b1} \times SBA^{b2} \times WD^{b3}$

Empirical models: AGBD $(Mg ha^{-1}) = b0 + b1 \times Rh_i$

Machine learning models: e.g. Random Forest

GEDI/Tandem-X/SAR Fusion

Immense possibilities for fusion of GEDI with Tandem-X, NISAR, BIOMASS and Tandem-L

- GEDI/DLR scientists collaborating on fusion of GEDI and Tandem-X (TDX) data
- TDX provides high-resolution interferometric observations
 - TDX derives topography and elements of canopy structure
- Joint field experiments such as AfriSAR provide opportunity to explore linkages to other SAR missions
 - L-band and P-band backscatter/interferometry/tomography

Key Drivers for GEDI/SAR Fusion

- Fill in spatial gaps in coverage for GEDI
- Produce higher spatial resolution and/or higher accuracy
- Creation of structural strata to guide biomass equation creation
- Provide alternate pathways to biomass calibration and estimation

Better understanding of the fundamental relationships between lidar measurements of canopy profiles and SAR data

One of the key research activities of the Biosphere Research

Enhancing Coverage/Resolution Using TDX

395 Days, 55%

clouds

Mission

10 BEAM 1000m

- Use GEDI data to parameterize or constrain TDX estimates of height
 - Use GEDI estimates of ground topography and 1. canopy in RVoG model
 - Combine GEDI height metrics with TDX metrics 2. in statistical estimation frameworks
 - **3**. Use TDX as additional basis for Bayesian kriging and other interpolation

GEDI/TDX Fusion in RVoG Model

GEDI/TDX Fusion

Hubbard Brook

Teakettle Experimental Forest

La <u>Selva</u> Biological Station

5th Alliance Week 2017 R. Dubayah: GEDI Mission Status

25

GEDI Data Products

Product/ Data File	Description	Source	First Data Delivery After IOC	Data Latency	Archive Site
GEDIO0_B	Level OB Instrument Products	МОС	Within 24 hours of receipt at GSFC	Within 24 hours of receipt at GSFC	LPDAAC
GEDI01_A-TX	Level 1A-TX Transmitted Waveform Fitted Parameters	SOC	First 2 months of L1 released at 6 months	4 months in monthly intervals	LPDAAC
GEDI01_A-RX	Level 1A-RX Received Waveform Fitted Parameters	SOC	First 2 months of L1 released at 6 months	4 months in monthly intervals	LPDAAC
GEDI01_B	Level 1B Calibrated and Geolocated Waveforms	SOC	First 2 months of L1 released at 6 months	4 months in monthly intervals	LPDAAC
GEDI02_A	Level 2A Elevation and Height Metrics	SOC	First 2 months of L2 released at 6 months	4 months in monthly intervals	LPDAAC
GEDI02_B	Level 2B Canopy Cover and Vertical Profile Metrics	SOC	First 2 months of L2 released at 6 months	4 months in monthly intervals	LPDAAC
GEDI03	Level 3A Gridded Land Surface Metrics	SOC	Populated with first 2 months of L2 data at 6 months	4 months in monthly intervals	ORNLDAAC
GEDIO4_A	Level 4A Footprint Above Ground Biomass	SOC	First 12 months of L3 data at 17 months	6 months after global sampling required to meet L1 requirement	ORNLDAAC
GEDI04_B	Level 4B Gridded Above Ground Biomass	SOC	First 12 months of L3 data at 17 months	6 months after global sampling required to meet L1 requirement	ORNLDAAC

GEDI/TDX RVoG Results

Hubbard Brook

Sierra Nevada

La Selva

Using GEDI DTM & GEDI Height 20 30 40 50 60 Lidar canopy height (m) 0.2 = 0.74 = 0.49 10 20 30 40 50 60 Lidar canopy height (m) $R^2 = 0.58$ bias = -0.01

. .

27

Results suggest **GEDI/TDX** fusion could produce height/metric grids at much finer resolution

Formal Statistical Estimation Framework

• Define a parametric framework to provide an estimate of the mean biomass (μ) and variance of the mean (σ) for a grid cell

 $\mu \pm \sigma$ How do we correctly propagate error to find σ ?

STAGE 1: Develop calibration between GEDI-like lidar and field plots

STAGE 2: Apply calibration equation to GEDI data on-orbit

Correct estimation of $\mu \pm \sigma$ for a 1 km cell is not straightforward

Two-stage estimation theory based on cluster sampling correctly propagates errors

What of cells with no GEDI

Formal Statistical Estimation Framework

• Define a parametric framework to provide an estimate of the mean (μ) and variance of the mean (σ) for a grid cell using a <u>hierarchical estimation theory</u>

 $\mu \pm \sigma$ How do we correctly propagate error to find σ ?

STAGE 1: Develop calibration between GEDI-like lidar and field plots

K. Dubayan: GEDI MISSION Status

STAGE 3: Develop relationship between GEDI biomass and TDX and map across landscape $[\mu, \sigma]$

Creating Structural Stratifications

- Structural typologies responsive to ecosystem structure have far reaching implications
 - Key element of Alliance Biosphere Research Group
- Creating biomass equations challenging
 - How many equations do we need
 - Where does one equation begin and another end?
 - How can we optimally interpolate for areas of no data?
- Can we use spatially continuous data from SAR (TDX/NISAR/BIOMASS) to create structural strata?
 - Can these be used in Bayesian kriging and other interpolation approaches?
 - Why, how, where and when should such approaches work?

AfriSAR Gabon

AfriSAR Gabon

Horizontal structure index – AfriSAR Gabon

Looking Forward to Tandem-L

Lidar vs L-band TomoSAR Profiles from 3 sites at AfriSAR

- Differently from X-band, L-band penetrates to the ground even in dense forest environments as in Lopè (Gabon).
- Tandem-L will allow a 3-D structure characterization globally and repeated in time
- Possibility of a synergy between Tandem-L and GEDI based on full vertical profiles and / or 3-D structural allometry

Next Steps and Conclusions

- GEDI is rapidly progressing toward launch in late 2018
- Key science issues:
 - Continued development of biomass prediction and error models
 - Expansion of field and lidar data base for model development and testing
- Fusion/collaboration with other missions of increasing importance
 - Tandem-X, NISAR, ICESat2, BIOMASS, Tandem-L
 - Joint field experiments and calibration/validation activities
- Entering unprecedented age of active remote sensing
 - Fundamental work on fusion applications linked to better understanding of ecological bases and physical remote sensing models that bridge differences in observational methodologies
- Activities of Alliance Biosphere Research Group should have great significance for GEDI and other missions

The GEDI Science Team

John Armston Univ. of Maryland (DSITI) J. Bryan Blair NASA GSFC Ralph Dubayah Univ. of Maryland Laura Duncanson NASA GSFC Lola Fatoyinbo NASA GSFC Scott Goetz NAU Steve Hancock Univ. of Maryland Matt Hansen Univ. of Maryland Sean Healey U.S. Forest Service Michelle Hofton Univ. of Maryland George Hurtt Univ. of Maryland Jim Kellner Brown University Scott Luthcke NASA GSFC Kostas Papathanasiou German Space Agency Hao Tang Univ. of Maryland

Extending Calibration Approaches

- GEDI-size footprints (25 m) are difficult to calibrate
 - Edge effects, geolocation errors
 - "attenuation" or "dilution" bias
 - Calibration equations can have large RMSE
- Can we create calibration equations that combine metrics from GEDI with metrics from larger TDX footprint?

 $biomass = f(GEDI_{25m} + TDX_{50m})$

Structure Characterization from TDX

 An horizontal structure index (50m scale) calculated by aggregating height profiles at 10m scale

5th Alliance Week 2017 R. Dubayah: GEDI Mission Status

38

Graveyard

5th Alliance Week 2017 R. Dubayah: GEDI Mission Status

Improving Spatial Resolution Using TDX/SAR

- Provide higher spatial resolution for GEDI products
 - Large gap between native resolution of 25 m and 1 km
- Many applications need higher spatial resolution
 - Biomass holy grail is about 100 m resolution
 - Tracking biomass gain/loss from disturbance
- Hierarchical estimation theory (3 stage) can be used here

GEDI/TDX Fusion

5th Alliance Week 2017 R. Dubayah: GEDI Mission Status

41

Deployment on ISS/JEM-EF

GEDI/TDX Fusion

ECOSYSTEM LIDAR

Using GEDI DTM & GEDI Height

