GETTING READY FOR (NI)SAR IN THE CLOUD

Contributors:

F.J. Meyer¹⁾²⁾, S. Owen³⁾, C. Stoner²⁾, H. Hua³⁾, S. Arko²⁾

¹⁾Geophysical Institute, University of Alaska Fairbanks
²⁾Alaska Satellite Facility (ASF), University of Alaska Fairbanks
³⁾Jet Propulsion Laboratory, Pasadena, California

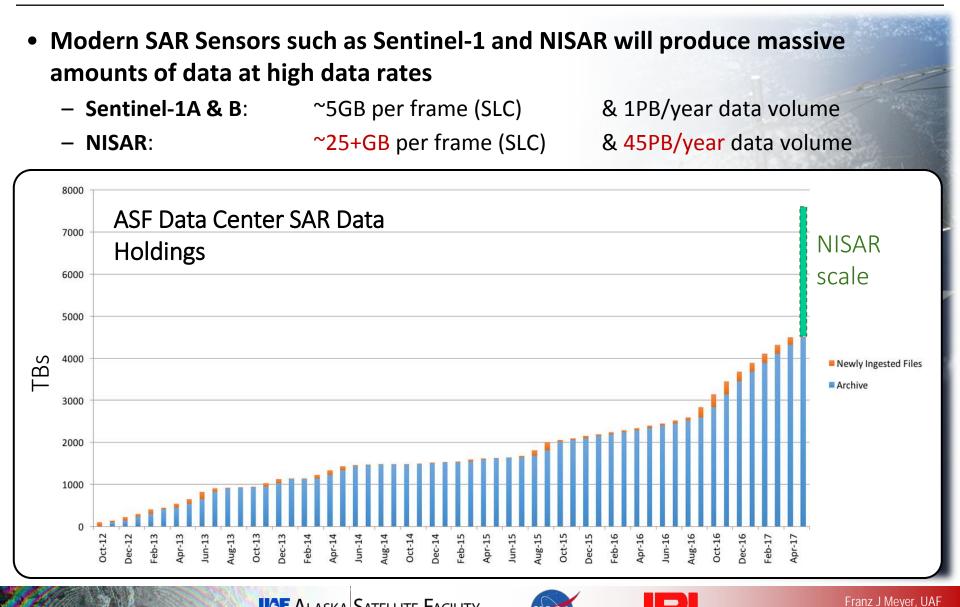
6/2017 HGF Alliance Meeting

• The Cloud and Its Relevance for Large Volume SAR Missions

- The Goals of the Get Ready for NISAR (GRFN) Project
- Current GRFN Status and Progress/Findings
- Conclusions

THE CLOUD AND ITS RELEVANCE FOR LARGE VOLUME SAR MISSIONS

- Public Cloud [Amazon, Google, Microsoft, ...]
 - Cloud vendors typically have "infinite" resources available
 - Virtual machines handle processing → spinning-up and terminating of VMs provides full performance while only paying for what you use
 - Web Object store for data storage & distribution → full capability but pay-as-you-go
- Private Cloud [your Typical Data Center]
 - Can also be virtual machines for processing, but pay for machines upfront as a sunk cost
 - Build out of data distribution capabilities takes time and must be paid for upfront
- Potential Benefits of the Cloud for Large Volume Remote Sensing Systems
 - Cloud allows you to scale up as you need instead of a big up front sunk cost
 - Cloud also allows researchers to bring their processing to the archive no more waiting to download 100s or 1000s of scenes first!



(NI)SAR And The Cloud The Relevance of Cloud Processing for Modern SAR Missions

HGF Alliance Meeting, 6/2017 - 5

Jet Propulsion Laboratory

- Modern SAR Sensors such as Sentinel-1 and NISAR will produce massive amounts of data at high data rates
 - Sentinel-1A & B: ~5GB per frame (SLC)
 - NISAR: ~25+GB per frame (SLC)

& 1PB/year data volume & 45PB/year data volume

- Traditional Architecture Won't Scale
 - For Data Centers, too expensive (in cost and time) to scale up to 100s of PB, mostly due to data movement (i.e. processing to storage, user downloads, etc.)
 - For Researchers, a typical two year deep stack will be hundreds of TBs in size
- The Big Data Challenges of Large Volume SAR Missions
 - How to cost effectively ingest and store large volumes?
 - How to scale up and serve large volumes?

Relevance of Cloud Concepts for Mission Operators

• Voluminous SAR Data Becoming a Forcing Function:

 Becoming too large to process SAR in traditional ways e.g. download L0/L1 to process to L2 interferograms and L3 time series

Advantages for Processing & Storage

- Bring processing to storage
 - \rightarrow Fewer data movements
 - ightarrow More efficient data handling and processing

• Advantages for Serving out Data

- Move user processing to storage
- Spend your time processing, instead of downloading hundreds or thousands of large volume data
- Examples:
 - estimated size of NISAR SLC is 25GB → 5 hours download time per file on 10mbps line → one-year stack (30 SLCs) requires >150 hours of download time

Why Should You Care About The Cloud

Relevance of Cloud Concepts for Science and Applications Communities

• Infrastructure and Logistics Savings

- Avoid downloading large data volumes (e.g. days to weeks of download time)
- No local storage infrastructure needs
- No expensive compute infrastructure needs
- Massively Parallel Processing Capabilities
 - Opportunity to harness tens of thousands of compute machines
 - Process in hours what used to take days or weeks
 - Limited only by amount you can pay, but pay only for hours that you use

Easier Fusion Products

- Opportunity to create products with other datasets in the cloud
- Without the cost to store
- Without the time to download

10 ing

- Processing in the Cloud is Plagued by Same Familiar Issues Related to ...
 - Metadata and data formats
 - Interoperability
- Cloud Resources still have same "Hardware" Failures
 - network timeouts and storage failures
- The Cloud Is not Necessarily Cheaper ...
 - Cloud cost models designed to be similar to total cost of ownership (TCO) of onpremise solutions
- But ... the Cloud Provides ...
 - "infinite resources"
 - pay-as-you-go options
 - Computing resources closer to the archive

THE GOALS OF THE <u>GET READY FOR NISAR</u> (GRFN) PROJECT

The Get Ready For NISAR (GRFN) Project Project Goals

- Project Goals:
 - Understand cost implications of various cloud-based and hybrid architectures for NISAR science data system (processing) and data center (storage)
 - Get science community familiar and comfortable early on with interacting with and working on large SAR datasets in a cloud environment.
- Approach:
 - Build a prototype NISAR processing system in the cloud based on Sentinel-1 SAR data
 - Derive Sentinel-1 SAR data products to socialize SAR data products to science communities
 - L2 products (interferograms; covariance information) for expert SAR community
 - L3 products (deformation rates; time series; ...) for broader science community
 - On-demand processing
- SAR products used to understand how scientists will interact with NISAR data in the cloud to accurately estimate cost implications

The Get Ready For NISAR (GRFN) Project Expected Key GRFN Science Data System Capabilities

- Prototype NISAR processing system with Sentinel-1 as proxy
- Up to L3 science data products for science focus areas [solid earth; ecosystems; cryosphere; applications]
- Simulate NISAR processing scenarios in the cloud
 - Forward stream processing ("keep up")
 - Bulk reprocessing
 - On-demand processing
 - Urgent response
- Cloud-based collocation of processing system with ASF data center
 - Establish cloud-based high-performance data delivery of L2 Sentinel-1 science data products from processing system to the ASF data center.
- Costing cloud economics
 - Perform analysis necessary to produce costing reports needed for NISAR.

The Get Ready For NISAR (GRFN) Project

Key GRFN ASF Data Center Investigations

- Ingest at NISAR Scale (bandwidth and volume)
 - Achieved through shared storage by collocation of SDS and data center

• Archive and Distribution (storage & distribution costs, bandwidth)

- Lifecycle and storage temperature (hot \rightarrow cold \rightarrow hot)
- Data distribution via Earthdata Search Client & Vertex

• Cost and Performance Implications of On-demand Processing Scenarios

- Standard product creation on-demand (virtual archive)
- Bulk re-processing from various storage types
- End-user processing system (bring processing to the data)

• Science Community Outreach

- L2 product usability and convenience packaging
- Fully Public Data access as a Beta product

CURRENT GRFN STATUS AND FINDINGS

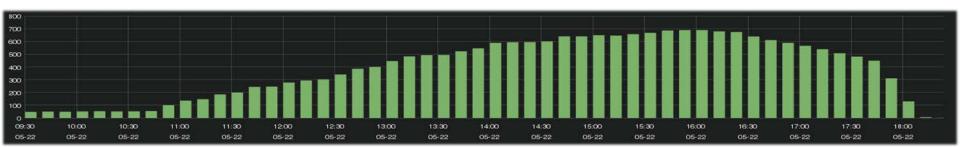
What Has Been Built/Done So Far

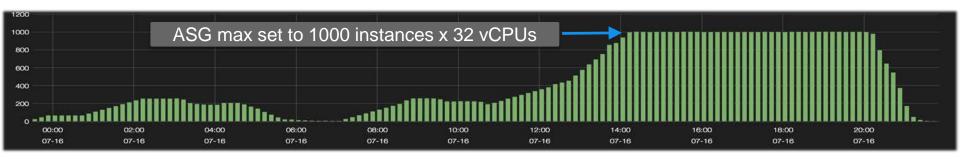
- GRFN SDS and Storage System Built in Public Cloud Environment
 - Now co-located with data center in AWS us-east region
- Collocated SDS and Data Center to Avoid Large L0-L2 Data Volume Movement
 - Capable of ingesting 10 Gbps at forward processing rates and 50 Gbps forward processing plus bulk reprocessing load
- Automatic L2 (Solid Earth) Processing, Ingestion, and Distribution
 - Products available via GRFN website, Vertex, and Earthdata Search client
- On-Demand L2 (Solid Earth) Processing, Ingestion, and Distribution
 - Limited scale, but also available via GRFN website, Vertex, and Earthdata Search client
- Multi-Temperature Storage Prototype
 - Used AWS native lifecycle policies and tracking to determine best (lowest cost) mix of storage classes based on Sentinel-1 distribution activity

Current GRFN Status and Findings

What Has Been Built/Done So Far

- Cloud-Based Prototype of On-Demand L3 Displacement Time Series
 - SBAS-type time series solution computed in AWS cloud
 - Time series analysis collocated with L2 interferogram stack




Load Testing: An Example of Cloud Scalability

- The size of the science data system compute nodes can automatically grow/shrink based on processing demand
- Auto Scaling group policies can be added
 - E.g., setting max scaling size to curb costs

Auto scaling enabling runs of over 100,000 **vCPUs**

Studying Performance and Cost Implications of Cloud Architectures

1. Egress Costs:

- Every file downloaded from the cloud will incur costs
- Depending on the download behavior of users, egress can be major cost factor for cloud-based architectures!

→ To Save Egress Costs, Hybrid Architecture Including Cloud, Edge Locations, and On-Premise Components is Recommended

- Store infrequently used data in the cloud (deep [cheap] storage)
- Serve "hot data" from on-Premise or cached edge locations → cheaper, even incl. direct connect & Hardware costs
- Distribution of data among cloud, edge, and on-premise locations may be learned from user behavior

Cloud Architecture and Egress Costs

Learn From Sentinel-1 SLC Download Patterns

Sentinel-1 SLC usage largely localized around Major Hazard Zones

Hot data zones (green areas) take care of >70% of Sentinel-1 SLC data downloads

 \rightarrow Serving out data in green areas from onpremise or edge location can lead to large savings in egress costs

2. Compute Costs

→ Mix Fast-Path and Slow-Path Processing Streams to Curb Costs

- Spend reserved instance compute time on Minimum Viable Product requirements to get product to serving
- Queue extra compute to the slow path on Spot Market instances to be cheaper but possibly later (i.e. Browse generation)

3. Storage Costs

\rightarrow Make storage decision during Ingest

 Per file, likely based on Area of Interest (AOI), decide on most appropriate temperature storage class during ingest (i.e. Glacier [cheapest storage] for products that will likely never be touched)

Advantages of Moving End-User Processing to Storage

- Fewer data moves [e.g. egress costs]
- Faster results!
- Process massively scalable next to storage
- No hardware requirement/maintenance for end user
- Fusion products with other datasets in the Cloud

How can we help you get started in the cloud?

Conclusion

- GRFN has shown the viability of cloud solutions for SAR data missions
- Various cloud architectures have been tested for performance and cost implications
- Some first findings have been presented today
- Not all functionality has been completely built and not all cost analyses are completed but progress is being made on all fronts

We just finished year #1 of GRFN – two more project years to come!!

Looking for Beta Testers to Assess GRFN Products & Services

- Earthdata Search
 - Search for "GRFN"
 - <u>https://search.earthdata.nasa.gov/search?q=GRFN&ok=GRFN</u>
- Vertex
 - Missions Tab, Beta Products
 - <u>https://vertex.daac.asf.alaska.edu/</u>
- GRFN/ARIA Science Data System
 - <u>https://aria-search.jpl.nasa.gov/</u> (data products, account sign up)
 - <u>https://aria.jpl.nasa.gov/</u> (general info)

Questions?

Contact: fjmeyer@alaska.edu

AGU FALL MEETING New Orleans | 11–15 December 2017

Session ID: 26762Session Title: G015. Recent Advances in SAR and InSAR Processing, Analysis, and Cloud Computing

Section/Focus Group: Geodesy Link: <u>https://agu.confex.com/agu/fm17/preliminaryview.cgi/Session26762</u>

Submit abstracts latest by Wed., August 2, 2017

A FEW ADDITIONAL LESSONS LEARNED

NASA

• Engineering

- Development in cloud environment is more efficient and agile than traditional means.
- Some cloud vendors (e.g. AWS) have strong community following that builds capabilities in and around cloud vendor (e.g., swiftstack storage)
- Cloud vendors provide suite of hardened and ready-to-use data system tools and services

• Infrastructure

- Collocation of compute and storage in same cloud region removes unnecessary data movements (and associated costs)
- Moving processing to data archive improves efficiency for large data volume scenarios such as L3 time series from deep stacks
- Data life-cycle policies can help to lower storage costs

