GETTING READY FOR (NI)SAR IN THE CLOUD

Contributors:
F.J. Meyer1)2), S. Owen3), C. Stoner2), H. Hua3), S. Arko2)
1) Geophysical Institute, University of Alaska Fairbanks
2) Alaska Satellite Facility (ASF), University of Alaska Fairbanks
3) Jet Propulsion Laboratory, Pasadena, California
Table of Contents

• The Cloud and Its Relevance for Large Volume SAR Missions

• The Goals of the Get Ready for NISAR (GRFN) Project

• Current GRFN Status and Progress/Findings

• Conclusions
THE CLOUD AND ITS RELEVANCE FOR LARGE VOLUME SAR MISSIONS
A Few Words on the Cloud
Public versus Private (On-Premises) Cloud

• Public Cloud [Amazon, Google, Microsoft, ...]
 – Cloud vendors typically have “infinite” resources available
 – Virtual machines handle processing → spinning-up and terminating of VMs provides full performance while only paying for what you use
 – Web Object store for data storage & distribution → full capability but pay-as-you-go

• Private Cloud [your Typical Data Center]
 – Can also be virtual machines for processing, but pay for machines upfront as a sunk cost
 – Build out of data distribution capabilities takes time and must be paid for upfront

• Potential Benefits of the Cloud for Large Volume Remote Sensing Systems
 – Cloud allows you to scale up as you need instead of a big up front sunk cost
 – Cloud also allows researchers to bring their processing to the archive - no more waiting to download 100s or 1000s of scenes first!
(NI)SAR And The Cloud
The Relevance of Cloud Processing for Modern SAR Missions

• Modern SAR Sensors such as Sentinel-1 and NISAR will produce massive amounts of data at high data rates
 – Sentinel-1A & B: ~5GB per frame (SLC) & 1PB/year data volume
 – NISAR: ~25+GB per frame (SLC) & 45PB/year data volume

ASF Data Center SAR Data Holdings

NISAR scale
(NI)SAR And The Cloud
The Relevance of Cloud Processing for Modern SAR Missions

• Modern SAR Sensors such as Sentinel-1 and NISAR will produce massive amounts of data at high data rates
 – Sentinel-1A & B: ~5GB per frame (SLC) & 1PB/year data volume
 – NISAR: ~25+GB per frame (SLC) & 45PB/year data volume

• Traditional Architecture Won’t Scale
 – For Data Centers, too expensive (in cost and time) to scale up to 100s of PB, mostly due to data movement (i.e. processing to storage, user downloads, etc.)
 – For Researchers, a typical two year deep stack will be hundreds of TBs in size

• The Big Data Challenges of Large Volume SAR Missions
 – How to cost effectively ingest and store large volumes?
 – How to scale up and serve large volumes?
Why Should You Care About The Cloud
Relevance of Cloud Concepts for Mission Operators

• Voluminous SAR Data Becoming a Forcing Function:
 – Becoming too large to process SAR in traditional ways e.g. download L0/L1 to process to L2 interferograms and L3 time series

• Advantages for Processing & Storage
 – Bring processing to storage
 → Fewer data movements
 → More efficient data handling and processing

• Advantages for Serving out Data
 – Move user processing to storage
 – Spend your time processing, instead of downloading hundreds or thousands of large volume data
 – Examples:
 • estimated size of NISAR SLC is 25GB → 5 hours download time per file on 10mbps line → one-year stack (30 SLCs) requires >150 hours of download time
Why Should You Care About The Cloud
Relevance of Cloud Concepts for Science and Applications Communities

• **Infrastructure and Logistics Savings**
 - Avoid downloading large data volumes (e.g. days to weeks of download time)
 - No local storage infrastructure needs
 - No expensive compute infrastructure needs

• **Massively Parallel Processing Capabilities**
 - Opportunity to harness tens of thousands of compute machines
 - Process in hours what used to take days or weeks
 - Limited only by amount you can pay, but pay only for hours that you use

• **Easier Fusion Products**
 - Opportunity to create products with other datasets in the cloud
 - Without the cost to store
 - Without the time to download
What the Cloud is Not
The Cloud Does Not Solve All Problems

• **Processing in the Cloud is Plagued by Same Familiar Issues Related to ...**
 – Metadata and data formats
 – Interoperability

• **Cloud Resources still have same “Hardware” Failures**
 – network timeouts and storage failures

• **The Cloud Is not Necessarily Cheaper ...**
 – Cloud cost models designed to be similar to total cost of ownership (TCO) of on-premise solutions

• **But ... the Cloud Provides ...**
 – “infinite resources”
 – pay-as-you-go options
 – Computing resources closer to the archive
THE GOALS OF THE GET READY FOR NISAR (GRFN) PROJECT
The Get Ready For NISAR (GRFN) Project

Project Goals

• Project Goals:
 – Understand **cost implications of various cloud-based and hybrid architectures** for NISAR science data system (processing) and data center (storage)
 – Get science community **familiar and comfortable early on** with interacting with and working on large SAR datasets in a cloud environment.

• Approach:
 – Build a **prototype NISAR processing system in the cloud** based on Sentinel-1 SAR data
 – Derive Sentinel-1 SAR data products to **socialize SAR data products to science communities**
 • L2 products (interferograms; covariance information) for expert SAR community
 • L3 products (deformation rates; time series; …) for broader science community
 • On-demand processing

• **SAR products used to understand how scientists will interact with NISAR data in the cloud to accurately estimate cost implications**
The Get Ready For NISAR (GRFN) Project

Expected Key GRFN Science Data System Capabilities

- Prototype NISAR processing system with Sentinel-1 as proxy
- Up to L3 science data products for science focus areas [solid earth; ecosystems; cryosphere; applications]
- Simulate NISAR processing scenarios in the cloud
 - Forward stream processing ("keep up")
 - Bulk reprocessing
 - On-demand processing
 - Urgent response
- Cloud-based collocation of processing system with ASF data center
 - Establish cloud-based high-performance data delivery of L2 Sentinel-1 science data products from processing system to the ASF data center.
- Costing – cloud economics
 - Perform analysis necessary to produce costing reports needed for NISAR.
The Get Ready For NISAR (GRFN) Project
Key GRFN ASF Data Center Investigations

• Ingest at NISAR Scale (bandwidth and volume)
 – Achieved through shared storage by collocation of SDS and data center

• Archive and Distribution (storage & distribution costs, bandwidth)
 – Lifecycle and storage temperature (hot → cold → hot)
 – Data distribution via Earthdata Search Client & Vertex

• Cost and Performance Implications of On-demand Processing Scenarios
 – Standard product creation on-demand (virtual archive)
 – Bulk re-processing from various storage types
 – End-user processing system (bring processing to the data)

• Science Community Outreach
 – L2 product usability and convenience packaging
 – Fully Public Data access as a Beta product
CURRENT GRFN STATUS AND FINDINGS
Current GRFN Status and Findings
What Has Been Built/Done So Far

- **GRFN SDS and Storage System Built in Public Cloud Environment**
 - Now co-located with data center in AWS us-east region

- **Collocated SDS and Data Center to Avoid Large L0-L2 Data Volume Movement**
 - Capable of ingesting 10 Gbps at forward processing rates and 50 Gbps forward processing plus bulk reprocessing load

- **Automatic L2 (Solid Earth) Processing, Ingestion, and Distribution**
 - Products available via GRFN website, Vertex, and Earthdata Search client

- **On-Demand L2 (Solid Earth) Processing, Ingestion, and Distribution**
 - Limited scale, but also available via GRFN website, Vertex, and Earthdata Search client

- **Multi-Temperature Storage Prototype**
 - Used AWS native lifecycle policies and tracking to determine best (lowest cost) mix of storage classes based on Sentinel-1 distribution activity
Current GRFN Status and Findings
What Has Been Built/Done So Far

• Cloud-Based Prototype of On-Demand L3 Displacement Time Series
 • SBAS-type time series solution computed in AWS cloud
 • Time series analysis collocated with L2 interferogram stack
Load Testing: An Example of Cloud Scalability

- The size of the science data system compute nodes can automatically grow/shrink based on processing demand

- Auto Scaling group policies can be added
 - E.g., setting max scaling size to curb costs

Auto scaling enabling runs of over 100,000 vCPUs

ASG max set to 1000 instances x 32 vCPUs
Current GRFN Status and Findings
Studying Performance and Cost Implications of Cloud Architectures

1. Egress Costs:
 - Every file downloaded from the cloud will incur costs
 - Depending on the download behavior of users, egress can be a major cost factor for cloud-based architectures!

→ To Save Egress Costs, Hybrid Architecture Including Cloud, Edge Locations, and On-Premise Components is Recommended
 - Store infrequently used data in the cloud (deep [cheap] storage)
 - Serve “hot data” from on-Premise or cached edge locations → cheaper, even incl. direct connect & Hardware costs
 - Distribution of data among cloud, edge, and on-premise locations may be learned from user behavior
Cloud Architecture and Egress Costs
Learn From Sentinel-1 SLC Download Patterns

Sentinel-1 SLC usage largely localized around Major Hazard Zones

Hot data zones (green areas) take care of >70% of Sentinel-1 SLC data downloads

→ Serving out data in green areas from on-premise or edge location can lead to large savings in egress costs
Current GRFN Status and Findings
Studying Performance and Cost Implications of Cloud Architectures

2. Compute Costs
 ➔ Mix Fast-Path and Slow-Path Processing Streams to Curb Costs
 • Spend reserved instance compute time on Minimum Viable Product requirements to get product to serving
 • Queue extra compute to the slow path on Spot Market instances to be cheaper but possibly later (i.e. Browse generation)

3. Storage Costs
 ➔ Make storage decision during Ingest
 • Per file, likely based on Area of Interest (AOI), decide on most appropriate temperature storage class during ingest (i.e. Glacier [cheapest storage] for products that will likely never be touched)
Current GRFN Status and Findings
Identified Opportunities of the Cloud for End-Users

• Advantages of Moving End-User Processing to Storage
 – Fewer data moves [e.g. egress costs]
 – Faster results!
 – Process massively scalable next to storage
 – No hardware requirement/maintenance for end user
 – Fusion products with other datasets in the Cloud

How can we help you get started in the cloud?
Conclusion

• GRFN has shown the viability of cloud solutions for SAR data missions
• Various cloud architectures have been tested for performance and cost implications
• Some first findings have been presented today

• Not all functionality has been completely built and not all cost analyses are completed but progress is being made on all fronts

• We just finished year #1 of GRFN – two more project years to come!!
Looking for Beta Testers to Assess GRFN Products & Services

• Earthdata Search
 – Search for “GRFN”
 – https://search.earthdata.nasa.gov/search?q=GRFN&ok=GRFN

• Vertex
 – Missions Tab, Beta Products
 – https://vertex.daac.asf.alaska.edu/

• GRFN/ARIA Science Data System
 – https://aria-search.jpl.nasa.gov/ (data products, account sign up)
 – https://aria.jpl.nasa.gov/ (general info)

Questions?

Contact: fjmeyer@alaska.edu
Session ID: 26762
Session Title: G015. Recent Advances in SAR and InSAR Processing, Analysis, and Cloud Computing
Section/Focus Group: Geodesy
Link: https://agu.confex.com/agu/fm17/preliminaryview.cgi/Session26762

Submit abstracts latest by Wed., August 2, 2017
A FEW ADDITIONAL LESSONS LEARNED
Summary and Lessons Learned

• Engineering
 – Development in cloud environment is more efficient and agile than traditional means.
 – Some cloud vendors (e.g. AWS) have strong community following that builds capabilities in and around cloud vendor (e.g., swiftstack storage)
 – Cloud vendors provide suite of hardened and ready-to-use data system tools and services

• Infrastructure
 – Collocation of compute and storage in same cloud region removes unnecessary data movements (and associated costs)
 – Moving processing to data archive improves efficiency for large data volume scenarios such as L3 time series from deep stacks
 – Data life-cycle policies can help to lower storage costs